RDT&E for Emerging Contaminants

Andrea Leeson, Ph.D.
Environmental Restoration Program Manager
SERDP/ESTCP

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE JUN 2010	2. REPORT TYPE		3. DATES COVERED 00-00-2010 to 00-00-2010			
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
RDT&E for Emerging Contaminants				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
Strategic Environm (SERDP),Environm	ZATION NAME(S) AND AD nental Research and nental Security Tecl rk Center Drive, Sui VA,22350-3605	Development Prog nnology Certificatio		8. PERFORMING REPORT NUMB	GORGANIZATION ER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited				
13. SUPPLEMENTARY NO Presented at the Ni held 14-17 June 20	DIA Environment, I	Energy Security & S	ustainability (E2	S2) Symposi	um & Exhibition	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF	18. NUMBER	19a. NAME OF	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 45	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

DoD's Environmental Technology Programs

Science and Technology

Demonstration/ Validation

Environmental Drivers Sustainability of Ranges, Facilities, and Operations

Maritime Sustainability Threatened and Endangered Species

UXO & Munitions Constituents

Toxic Air Emissions and Dust

45N

Noise

Climate Change & GHG

Urban Growth & Encroachment

Environmental DriversReduction of Current and Future Liability

Contamination from Past Practices

- Groundwater, Soils and Sediments
- Large UXO Liability
- Emerging Contaminants

Pollution Prevention to Control Life Cycle Costs

- Elimination of Pollutants and Hazardous Materials in Manufacturing Maintenance & Operations
- Achieve Compliance Through Pollution Prevention

Scales of Research

Emerging Contaminant Defined

- Synthetic or naturally-occurring chemical or microbe
- Not commonly monitored
- Potential to enter the environment and cause known or suspected adverse environmental or health effects
- Sometimes heretofore undetectable

Current Research on Emerging Contaminants

- Perchlorate
- NDMA
- 1,4-Dioxane
- PFCs

Perchlorate Issue

- Broad Use & Occurrence
 - DoD
 - Rocket propellant
 - Insensitive munitions
 - Pyrotechnics and flares
 - Agricultural
 - Natural deposition

Perchlorate RDT&E

In-Situ Remediation

Eco-toxicology

Alternatives

Ex-Situ Treatment

Sources

Eco-Toxicology

- SERDP initiated studies in 1998
- A comprehensive program
 - amphibians
 - fish
 - invertebrates
 - birds
 - small mammals
- Laboratory and field studies
- Work is the basis for EPA ecorisk assessment
- Investment Completed
- Comprehensive book being written

Vadose Zone Treatment

Ex Situ Treatment

- 1998 drinking water treatment R&D was initiated by an industry consortium (AWWARF)
 - Completed in 2004
- Successful ESTCP waste water bio-treatment transitioned in 2000
- Only ion-exchange currently used for drinking water
- FY2005 initiatives
 - ESTCP Congressional program to dem/val new approaches (ion exchange, biotreatment, tailored GAC)
 - SERDP develop program for next generation treatment

Ex-Situ Bio-Reactor

In Situ Treatment

- SERDP initiated bioremediation R&D in 1998
 - Fundamental and applied studies
 - Showed potential and method for cost effective treatment
 - Investment completed
- Dozens of field demonstrations ongoing across DoD
- Fully commercialized
 - Two full-scale applications

Influence of Different Electron Donors on Perchlorate Biodegradation in Aquifer Microcosms from Site 16

Microbial Biodegradation of Perchlorate

Treatment Approaches

Electron donor

Active Treatment

- Soluble Electron Donor
- Continuous pumping

Semi-Passive Treatment

- Soluble Electron Donor
- Intermittent Pumping

Passive Treatment

- Slow Release Electron Donor
- No Pumping

Considerations:

Mixing, O&M Costs, Biofouling, Secondary Groundwater impacts

Perchlorate Sources

- DoD Sources
 - Manufacturing
 - Demilitarization
 - Test and Training Ranges
- Natural Sources (FY05 Start)
 - Cause
 - Distribution
 - Fate
 - Identification
- Non Military Sources (FY05 Start)
 - Magnitude
 - Extent
 - Identification

Isotopic Identification of Perchlorate Sources

Road Flares

Background

♦ 20-40 million flares sold annually

Laboratory

- Lab studies showed 5-6% potassium perchlorate in unburned flares (10g for a 15 min flare)
- Complete burning reduced perchlorate by 99% still have up to 66 mg perchlorate in flare residue

Field

- Monitoring of background levels of perchlorate in highway runoff
- Monitored highway run-off near a road flare deployed by State Police at an accident scene (I-95 MA)
- Max ClO4⁻ concentration leaving highway: ~ 314,000 PPB
- Peak load of ClO4⁻ leaving highway: 32.4 mg/min.
- Total ClO4⁻ load to receiving waters :1.3 g
- Flares can be a significant point source of perchlorate

Fireworks

- Background
 - 221 million pounds consumed in U.S. in 2003
 - May contain up to 70 wt% potassium perchlorate
 - Case studies discussing contamination at display sites are limited
- Field Study
 - Concentration of perchlorate increased from ND to 5 mg/kg after firework display

Perchlorate and Metals Concentrations in Firework Charges

Parameter (mg/kg)	Charge 1	Charge 2	
Perchlorate	389,000,000	355,000,000	
Aluminum	77,000	120,000	
Antimony	ND	ND	
Barium	440	190	
Calcium	1,700	720	
Magnesium	80,000	120,000	
Potassium	160,000	160,000	
Sodium	ND	150	
Strontium	18	22	

 Perchlorate concentration in fireworks charge was 389 g/kg.
 Aluminum, magnesium and potassium were also present at high concentrations

Natural Sources: Where it all started

Chilean NO₃ Deposits (Atacama Desert)

- Desert for at least last 1 MY
- ClO₄⁻ (>.1%) identified over 100 years ago
- ◆ Deposits also contain IO₃, CrO₇ (mg/kg in some strata)

ClO₄ Concentration Distribution in Groundwater from Selected Areas

Proposed Perchlorate Accumulation Mechanisms

- Atmospheric Production and Deposition
- Partial Transport in Undisturbed Arid Areas
- Accumulation over long Periods
- Flushing Possible from Irrigation or Climate Shifts
- Not Stable in Anaerobic Environments and Some Plant Uptake

What's the Overall Significance?

- Exposure
 - Plants?
 - Milk?
 - GW?
- Future GW impacts
 - Desert Urbanization
 - Climate Change
 - Irrigation
- Site Assessment
 - Establish Background
 - Isotopic Differentiation

Natural vs. Anthropogenic Perchlorate

Key Question: Can You Distinguish Natural from Man-Made Perchlorate?

??

Isotope Ratio Analysis to Differentiate Perchlorate Sources

- Objectives
 - Analyze Isotope Ratios in Commercial, Military, and Natural Perchlorate Sources.
 - Develop broad database quantifying difference between natural and anthropogenic perchlorate.
 - Analyze Isotope Ratios of Perchlorate in Groundwater Plumes with Anthropogenic Origin and Suspected Natural Sources.
 - Demonstrate/validate isotopic procedure for forensic analysis.
- Elements in a compound can have widely different isotopic ratios based on mode of formation (e.g., ¹⁸O in NO₃ from nitrification vs. atmospheric).
- Stable isotope ratios provide a unique "fingerprint" of a chemical compound, another dimension of information invisible from dissolved concentrations.

First Objective: Analyze Isotope Ratios in Commercial, Military, & Natural Perchlorate Sources

- Military sources
 - Propellant-grade perchlorate
 - Demilitarization activities
- Commercial sources
 - Reagent grade perchlorate
 - Fireworks
 - Emergency flares
 - Cotton defoliants
 - Bleach

- Natural sources
 - Chilean caliche
 - Natural fertilizers with Chilean nitrate
 - Southwest US: Evaporites
 - Potash salt

Results: Forensic Isotopic Analysis of Σ Perchlorate δ³⁷Cl and δ¹⁸O

Chlorine markedly "heavier" in anthropogeni Perchlorate (n = 25).

 δ^{37} Cl: 0.6 ± 0.9 Range: - 3.1 to 1.6

 $\delta^{18}O$: -17.2 \pm 2.8 Range: -24.8 to -12.5

Oxygen consistently "heavier" in natural Perchlorate (n = 7).

 δ^{37} Cl: -12.8 \pm 2.0

Range: -14.5 to -9.2

 δ^{18} O: -6.3 ± 2.5

Range: -9.3 to -2.2

ESTCP

NDMA

Toxicology

- NDMA is a potent mutagen, teratogen, & carcinogen.
- ◆ EPA 10⁻⁶ Lifetime Cancer Risk = 0.7 ng/L.
- California DHS; 10 ng/L Action Level;
 California OEEHA 3 ng/L PHG (12/2006)

Sources

- ◆ 1,1-Dimethylhydrazine Rocket Fuel[(CH₃)₂NNH₂]
- Aerozine 50 (Mixture of Hydrazine and 1,1DMH)
- Disinfection Byproduct (Chloramine)
- Industrial, Agricultural and Food Sources.

Treatment

- Pump-and-Treat with UV Irradiation
- 1000 mj/cm² for 10-fold reduction
- (10X for *Cryptosporidium*)

ESTCP

Biological Degradation of NDMA

- Summary of Previous Research:
 - Mammalian Metabolism
 - Cytochrome P-450 System
 - Biological Degradation
 - Several Papers 1970's 1980's
 - Biodegradation Observed in Soils and Lake Water, Intestinal Bacteria
 - Persistent in Groundwater
 - No Environmental Isolates Capable of Growth on NDMA
 - One Isolate Capable of Cometabolism
 - *Methylosinus trichosporium* OB3b

Potential Remedial Applications

NDMA Summary

- Treatable by UV Oxidation
- *In Situ* and *Ex Situ* Biotreatment Possible
 - May require propane biostimulation to reach low levels
- Ex Situ Metal Catalyst Treatment Showing Promise (Data not shown)

I,4-Dioxane

1,4-Dioxane

Country Country of Cou

1,1,1-Trichloroethane

The 1,4-Dioxane Problem

- Used extensively as a stabilizer in chlorinated solvents
 - Primarily used with 1,1,1-TCA
 - 1,1,1-TCA found at 809 NPL sites (www.atsdr.gov; 2004)
- 1,4-Dioxane has recently emerged as a contaminant of concern
 - Low action levels in several states: California (3 ppb); Florida (5ppb); Maine (70 ppb); Massachusetts (50 ppb); Michigan (1 ppb); North Carolina (7ppb)
 - Risk of closed sites being re-opened
- Little detailed information on the fate of 1,4-dioxane in groundwater
 - Few biodegradation studies

Current Treatment Options for 1,4-Dioxane

- *In situ* oxidation
 - Reported to work in some cases
- Advanced Oxidation (HiPOx)
 - Some full-scale systems in place
- Biological Treatment
 - Co-metabolic process (propane/THF)
 - Biological treatment has proven to be challenging
- No universal solution yet available

Perfluoroalkyl Contaminated Groundwater

- FY11 SON: In Situ Remediation of Perfluoroalkyl Contaminated Groundwater
- Objectives:
 - Improve understanding of mechanisms involved in F&T processes in groundwater under varying natural & engineered conditions.
 - Determine impact of co-contaminants on F&T processes.
 - Improve understanding of behavior of perfluoroalkyl contaminants under typical remedial technologies for cocontaminants.
 - Develop remedial strategies for perfluororalkyl contaminants, including consideration of the necessity for treatment train approaches to facilitate treatment of co-contaminants.

What Are Perfluorochemicals (PFCs)?

- General formula: $F(CF_2)_n-R$
 - Hydrophobic alkyl chain of varying length (typically C_4 to C_{16})
 - Hydrophilic end group
- Man-made compounds with unique chemical properties
 - Very stable and persistent in the environment
 - Ionic form of PFCs highly soluble, non-volatile, and poorly sorb to soil
- Primary PFCs of interest
 - Perfluorooctane sulfonate (PFOS)

Perfluorooctanoic acid (PFOA)

$$C_8HF_{15}O_2$$

What Are PFCs Used For?

- Used to make:
 - Fluoropolymer coatings and products that resist heat, oil, stains, and grease.
 - Clothing
 - Furniture
 - Food packaging
 - Heat resistant non-stick cooking surfaces
 - Electrical wire insulation
 - Fluorosurfactants
 - Aqueous film forming foam (AFFF)
 - Chromium plating mist suppressants
 - Stain repellants
 - Photolithographic chemicals

Aqueous Film Forming Foam

AFFF

- ◆ Developed in 1960s by 3M and U.S. Navy for use on Class B fires (flammable liquids)
- ◆ Contains fluorosurfactants other compounds as required) per MILSPEC MIL-F-24385F(SH)
- Low surface tension and positive spreading coefficient enable film formation on top of lighter

PFCs in AFFF

- Historically, AFFF contained PFOS and small percentage of PFO (disassociated form of PFOA)
- ◆ 3M, sole producer of PFOS in the U.S., discontinued production of PFOS in 2001
- Continued use of stockpiled PFOS-based AFFF not currently restricted under U.S. regulations
- ◆ AFFF now produced using smaller chain PFCs (<C₆) fuels

Growing Regulatory Interest in PFCs

- Interest driven by findings of PFCs in :
 - Occurrence in biological organisms and environmental media
 - Groundwater near PFC manufacturing and disposal facilities
 - DuPont Washington Works Facility, West Virginia
 - 3M Cottage Grove Facility, Minnesota
 - Numerous landfills and disposal sites in Minnesota
 - Soil and groundwater near fire training facilities in Minnesota
 - Soil and compost at north Georgia wastewater treatment facility
 - Sewage sludge and agricultural soils in Alabama
 - Public water supply systems in New Jersey

Federal Regulation Related to Cleanup

- CERCLA not a hazardous substance, pollutant, or contaminant
- Not RCRA regulated waste (listed or characteristic)
- PFOA/PFOS not currently regulated under the USEPA Safe Drinking Water Act
 - Recently included on the USEPA Drinking Water Contaminant Candidate List (CCL3)
- USEPA Provisional Health Advisory Values
 - PFOA 0.4 μg/L
 - PFOS 0.2 μg/L
 - Developed in response to contaminated agricultural sites in Alabama but values can be used to assess exposure at other sites
 - Based on
 - 10-kg child consuming 1 L drinking water per day.
 - Default relative source contribution (RSC) 20%

State Environmental Guidelines/Action Levels

Guideline / Action Level	Media	PFOA	PFOS
Minnesota Health Risk Limit	Groundwater	0.3 μg/L	0.3 μg/L
North Carolina Interim Maximum Allowable Concentration	Groundwater	2 μg/L	
New Jersey Preliminary Guidance Value	Drinking Water	0.04 μg/L	
California – under review for possible Prop. 65 listing	NA	√	
Washington Persistent Bioaccumulative Toxins Rule	NA		√

Environmental release of PFCs

- Historical testing or emergency activation of fire suppression systems in hangars
- Leaks from storage tanks and pipelines
- Historical fire fighter training exercises

Scope

- Scope of potential impact difficult to define
- Site investigations have not typically included analysis for PFCs, given their emerging status
- Scope of potential problem can be estimated using the number of "Fire/Crash/Training" sites as a surrogate for actual site data
 - May underestimate problem by not including AFFF spills, pipeline leaks, or testing/emergency activation of aircraft hangar fire suppression systems

Potential Impacts to DoD Restoration Program

DoD Fire/Crash/Training Sites

Service	Total Sites	Remedy in Place (RIP)		Response Complete (RC)	
		RIP ≤ 2008	RIP > 2009	RC ≤ 2008	RC > 2009
Air Force	353	296	47	249	104
Army	94	7	6	79	15
Navy	132	115	17	51	56
DLA	3	1		3	
FUDS	12		1	7	5
Total	594	419	71	389	180

Cleanup Challenges

- Many conventional treatment approaches are not effective for PFCs in water (e.g., direct oxidation, air stripping, vapor extraction)
- Technologies currently available to treat PFCs in water include
 - Granular activated carbon (GAC) is most effective method
 - Drinking water treatment (municipal and private wells)
 - Landfill water treatment
 - Reverse osmosis is effective for higher concentration industrial waste streams
- Bench-scale research to develop alterative treatment approaches continues

Home Pages

http://www.serdp.org

http://www.estcp.org